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This monograph systematically addresses a relatively new class of numerical 
methods for singularly perturbed initial and boundary value problems, typical 
examples of which are 

(IVP) Eux(x) + a(x)u(x) =f(x) forx>0,u(0) =A, 

and 

(BVP) cuxx(x) + a(x)ux(x) - b(x)u(x) = f(x) for 0 < x < 1, 

u(0) = A and u(l) = B. 

In these problems E is a positive constant in (0, 11 which may be very small, 
a(x) > 0, b(x) 2 0, and A and B are given constants. When - is small, near x = 0 
the solution u(x) of (IVP) and (BVP) displays a boundary layer, i.e., a large 
gradient. 

The presentation is expository while centering around the authors' research on 
finite difference methods for problems of the type (IVP) and (BVP) whose conver- 
gence is uniform for - in (0, 1 ] in the sense described below. Many of the results are 
new and have appeared previously in at most an abbreviated form. 

Denoting the approximate solution obtained using a given finite difference scheme 
on an equally spaced mesh of size h by uh (having value Uh at the ith mesh point), 
the scheme is said to be uniformly convergent with order p if the difference between 
uh and the exact solution u at all the grid points is bounded by Ch P where C and p 
are independent of h and e. Uniformly convergent methods can be expected to be 
reliable for all values of E even on coarse meshes. Such methods may thus also 
provide a sound starting point for various mesh refinement algorithms. 

When - is small relative to the mesh size, use of classical "centered" difference 
methods is quickly seen to lead to instability; e.g., defining p h/c and approximat- 
ing the solution of (IVP) when a 1 and f _ 0 with 

(C1) -(u,+,-u1)/h + (u+, + uj)/2 = 0, uo A, 

leads to 

(C2) ul+l (1 - p/2)u,/ (1 + p/2) 

which oscillates when p > 2. This type of instability can be suppressed by the use of 
" upwinding", e.g., 

(W 1) - (ui I - u1h + uh JrI1 = n, uo = A, 
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however this still does not achieve uniform (in e) convergence, since when p = 1 the 
error at x = h remains a fixed nonzero quantity as h -O 0. 

In the text necessary conditions are given for a finite difference scheme to be 
uniformly convergent for (IVP) or (BVP) (and for related problems). The general 
idea is that the scheme should be exact for the constant coefficient homogeneous 
problem, or equivalently, that the fundamental (exponential) solution behavior 
should be built into the coefficients of the difference scheme. Such schemes are 
called exponentially fitted. A uniformly accurate scheme for (IVP) is 

(U1) Eai(p)(u+ - ui)/h + a(x,)uj = f(xl), u0 = A, 

where p =h/c and the exponential fitting factor ai is defined by 

(U2) aj(p) = pa(xi)/[1 - exp(-pa(x,))]. 
For (BVP), the original uniform scheme, which was formulated by Allen and 
Southwell [1], is 

Ei (p)(ui_ -2u, + u+?l)/h2 + a(xi)(u+1 -u 1 )/(2h -b(xl)ul 

(U3) =f (xl ), i = 1 .. ., N- 1, 

p-h/c, N 1/h, uo = A, UN = B, a1(p) = jpa(xl)coth(jpa(xl)). 
Both these schemes are uniformly convergent with order 1. 

The error analysis for these (and many other) finite difference methods is carried 
out through the use of, and in a manner designed to illustrate, three general 
approaches. All utilize a priori analysis of the behavior of the solution of the original 
problem, and the fact that in each case the differential equation and its difference 
approximation satisfy a maximum principle. The two mesh method, used first by 
Il'in [2] to prove uniform first order convergence for (U3), and posed as a systematic 
approach by Miller [4], states that a scheme is uniformly convergent with order p if 
and only if the scheme is convergent (for each fixed e) and the difference in grid 
values for a successive mesh halving is uniformly of order p, i.e., 

uh- u2i I C2hP 

with C2 and p independent of h, i, and e. 
The second approach, which the authors attribute to Emelyanov, Shishkin, and 

Titov, is to use a classical error bound based on the local truncation error for - c hr, 
for some appropriate choice of r, and then to use an asymptotic expansion of the 
solution to obtain an error bound for E < hr; the combination of the two estimates 
yielding the desired result. 

The third approach hinges on the choice of comparison (barrier) functions derived 
specifically from the difference scheme being analyzed. This, together with certain a 
priori knowledge of the behavior of the solution, can be used to produce error 
estimates, as typified by the work of Kellogg and Tsan [3]. 

The text is divided into three parts, the first treating the initial value problem (cf. 
(IVP)). Basic properties and asymptotic expansions of the solution of the continuous 
problem are developed, and the behavior and limitations of classical difference 
schemes are described. Necessary conditions for a scheme to be uniformly conver- 
gent are given, and some specific exponentially fitted schemes are proven to be 
uniformly convergent. Other topics considered are extrapolation, uniformly accurate 
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higher order schemes, systems, nonlinear problems, and open questions. In the 
second part of the text, boundary value problems (cf. (BVP)) are treated along an 
analogous program. In addition to (BVP), the selfadjoint problem 

(SA) - -uxx(x) + b(x)u(x) = f(X) for 0 < x < 1, u(0) = A and u(I) = B, 

where b(x) > 0, is considered, as well as the conservation form equations corre- 
sponding to (BVP) and (SA). Mixed boundary conditions are also treated. The last 
section contains a wide range of numerical results illustrating the behavior of the 
finite difference methods discussed in the first two parts, along with a representative 
Fortran program listing. Very helpful lists of notation and terminology are included, 
as is an extensive bibliography. 

Altogether, this monograph presents a very lucid account of the use and analysis 
of exponential fitting to obtain uniformly convergent finite difference schemes for 
singular perturbation problems. Many of the results are new and anyone working in 
this field will want to have ready access to this text. It also provides a concise and 
accessible introduction to this area of study. In particular, the first section dealing 
with initial value problems provides a superb introduction to the fundamental 
concepts while the algebra involved is quite tractable (in contrast to the convergence 
proofs for boundary value problems where the algebra is rather formidable, regard- 
less of the approach taken to attain the result). 

While no errors affecting the validity of the results were noted, the following 
comments might perhaps save the reader some effort in following a few parts of the 
exposition. On page 24, uh should be e-P etc. The equality on page 28 for Q, can be 
verified by comparing terms involving a(p) and by using the identity coth(z) 
(ez + e-z)/(ez - e-z). On page 42 the second term inside the braces expressing Vj i 
should read - exp(- pa(xi)). Also Theorem 1 in Appendix B is not correct as stated 
(e.g. take p = 1, a-1, a, = 2, a2 =- 3 = -1, Al 3, I2 =1 3= 5; then (b) 
fails); however, wherever it is invoked the approach of writing ex -ey = (x - y)ec 
= (x - y)ey + .5(x - y)2e7 (for some ( and q between x and y) and recalling the 
fact that xr exp( - cx) is bounded for x > 0 (for r and c fixed positive constants) can 
be used to obtain the desired bound. The equality used in the proof of Lemma 10.1 
on page 60 did not seem to be obvious; it can be verified by multiplying through by 
Qes, comparing coefficients of sPQq for p, q > 0, and then using induction on p to 
establish the necessary combinatorial identity. The inequality on the top of page 107 
in the brief sketch of the proof that the scheme (U3) is uniformly accurate is not 
right. The direction of the inequality should be reversed, and then the result is still 
only valid for h > - (e.g., it is clearly not correct for - = 1). The (lengthy) complete 
proof can be found in Miller [4] (two mesh method) and Kellogg and Tsan [3] 
(comparison functions). Also the second term on the right side of (7.5) is bounded 
by a constant times the first and so can be omitted; the error estimate for (U3) is 
thus 

u(x1) - I Ch2/ (h + e) for each i. 

In the discussion below (7.6) on page 109 there is no contradiction since the result 
quoted also requires that the Q weights be nonnegative and evaluations of f occur 
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only at xi-,, xi and x1+ (this discussion is later correctly continued on pages 
181-182). 
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This book is really a compilation of three volumes. Chapters 1-3 and Chapters 
4-6 are the respective English translations of volumes I and II of the French edition 
which appeared in 1976. Following these chapters there are six appendices covering 
material on variational inequalities developed since the publication of the French 
edition. 

Since a review of the French edition appeared in Math. Comp., v. 32, 1978, pp. 
313-314, we give only a brief synopsis of the first six chapters and concentrate on 
the additional material contained in the appendices. 

Chapter 1 deals with the general theory of stationary variational inequalities, 
Chapter 2 with solving the finite dimensional optimization problems which result 
from the approximation schemes, and Chapter 3 with the specific model problem of 
elasto-plastic torsion of a cylindrical bar. The problem of a nondifferentiable cost 
functional is considered in Chapters 4 and 5, with examples such as the steady flow 
of a Bingham fluid in a cylindrical duct. Chapter 6 contains a discussion of some 
general approximation schemes for time dependent variational inequalities. 

It is the goal of the appendices to treat what the authors consider to be the most 
important contributions to the subject since the publication of the original French 
edition. That substantial progress has been made is evidenced by the fact that the 
appendices comprise about one third of this book. 

For example, one important development has been the estimation of approxima- 
tion errors in connection with the use of finite element approximation schemes. This 
material is now heavily represented with results for the obstacle problem in Appen- 
dix 1, the elasto-plastic torsion problem in Appendix 2, and the steady flow of a 
Bingham fluid in Appendix 4. 


